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Supplementary Metrics: In addition to the metrics used in
the main paper, we also report backwards Backward Transfer
(BWT) [1] and Forgetting (FTG) [2]. BWT is a measurement of
increase in performance on task n after training across all tasks
1 . . . N . A higher value is better, indicating that the learner is
better at performing task n after learning the subsequent tasks.
A negative value indicates a drop in performance, which is
typically expected in class incremental learning. A weakness
of this metric is that it measures performance relative to
local tasks and does not reflect performance on the global
task of class incremental learning (i.e. the softmax outputs
are across only the local per-task categories, not across all
of the categories encountered throughout training). FGT is
a measurement of decrease in performance on task n with
respect to the global task; it is essentially negative backward
transfer adopted for class incremental learning. A lower value
is better, indicating that the learner has experienced less
average performance decrease on task n throughout training. A
weakness of this metric is that it does not account for natural
decrease in performance due to the increasingly more difficult
global task characteristic in class incremental learning. A key
difference between BWT and FGT is that when evaluating task
n performance for BWT, only task n classes can be returned
during inference, whereas for FGT, all tasks classes 1 . . . n can
be returned. We include both of these metrics for experiment
results during all subsequent sections because while neither
is regularly used for class incremental learning, they may be
useful to the reader.
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A. DistillMatch Ablation Study

Here, we ablate our method in two experiment scenarios:
RandomClass Tasks with Uniform Unlabeled Data Distribution
(Table Ia) and ParentClass Tasks with PositiveSuperclass
Unlabeled Data Distribution (Table Ib). Ω curves for both
Tables are given in Figure 1. In the former case, we find
that the hard distillation loss (eq. 7) is the most significant
contribution, but the semi-supervised consistency loss (eq. 4),
class balancing (eq. 3), and soft distillation loss (eq. 1) add
significant performance gains as well. In the later case, we
actually find the semi-supervised consistency loss (eq. 4) and
distillation loss (eq. 1) to be the most important, while class
balancing (eq. 3) and hard distillation loss (eq. 7) perform very
similarly. This reflects the strength of our method: DM performs
well in all of our experiments because it has components which
vary in importance depending on the scenario (i.e. coreset size
and object-object correlations).

B. Additional Experiment Details

We used used a batch size of 64 for labeled training data and
128 for unlabeled training data. As done in [2], we train over
200 epochs per task with a tuned learning rate decaying by
0.1 after 120, 160, and 180 epochs. When a coreset is present,
we include finetuning of the final layer in our model using
only the coreset and class balancing, as introduced in GD [2].
If finetuning, the model is trained over the first 180 epochs
in the same manner, but after 180 epochs the learning rate is
reset to 10% of the initial learning rate and is trained for 20
additional epochs with decays by 0.1 after 10, 15 epochs. We



TABLE I: Results (%) for Selected Ablation Studies on CIFAR-100 with 20% Labeled Data. Results are reported as an average
of 3 runs with mean and standard deviation. Each row represents a part of our method which is removed as part of the study.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Ablation AN (↑) Ω (↑) BWT (↑) FGT (↓)
`pl - eq. 7 7.7± 0.5 32.0± 0.2 −5.8± 1.9 56.6± 1.9
w(k) - eq. 3 30.2± 1.9 69.6± 0.5 −4.8± 0.2 10.5± 0.5
`ul - eq. 4 33.3± 0.9 71.2± 2.3 −0.7± 0.3 7.7± 0.2
`dst - eq. 1 35.2± 1.1 74.1± 1.7 −4.8± 0.4 8.0± 0.9
Full Method 37.5± 0.7 76.9± 2.5 −1.0± 1.0 6.5± 0.5

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Ablation AN (↑) Ω (↑) BWT (↑) FGT (↓)
`pl - eq. 7 19.3± 1.1 64.6± 0.9 −17.9± 0.3 28.8± 1.0
w(k) - eq. 3 19.4± 0.6 63.1± 1.4 −17.4± 0.4 27.2± 0.7
`ul - eq. 4 17.1± 0.7 57.6± 1.5 −14.0± 0.1 21.8± 0.6
`dst - eq. 1 17.7± 0.8 58.1± 1.5 −15.9± 0.9 22.7± 1.0
Full Method 19.7± 0.8 63.3± 2.1 −18.2± 0.7 24.9± 0.6

Fig. 1: Ω curves showing task number t on the x-axis and At,1:t on the y-axis.

(a) Ω curve for Table Ia (b) Ω curve for Table Ib

TABLE II: Hyperparameters, chosen with grid search

Coreset Yes No
Hyperparameter Range DM GD DM GD
Learning Rate 5e-3, 1e-2, 5e-2, 1e-1, 5e-1 1e-1 1e-1 1e-1 5e-3

Weight FixMatch Loss 0.1, 0.5, 1, 5 1.0 1.0
TPR 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95 0.05 - 0.5 -

ε (Fix Match) 0.7, 0.85, 0.9, 0.95 0.9 - 0.9 -

use stochastic gradient decent with 0.9 momentum and 0.0005
L2 weight decay.

As also done in [2], we hold λdst to a constant value, 1,
and include a small temperature scaling, 2, for the softmax
activations used in eq. 1. All results are averaged over 3 repeats
and generated with a common deep learning architecture (WRN-
28-2) [3]. Results were generated using a combination of Titan
X and 2080 Ti GPUs. Although we did not record specific run-
times here as they are machine specific, we find our method
to have a similar run-time to GD.

C. Hyperparameter Selection

We tuned hyperparameters using a grid search. We did
this for two scenarios: (i) RandomClass Tasks with Uniform
Unlabeled Data Distribution and (ii) ParentClass Tasks with
PositiveSuperclass Unlabeled Data Distribution. The former is
applied for all experimental scenarios which do not include
a coreset, and the latter is applied for all scenarios which

do include a coreset. We chose this division as we found
the coreset size to greatly affect the other hyperparameters.
DR and E2E use hyperparameters chosen for GD (as done
in [2]), while Base uses hyperparameters from DM. The
hyperparameters were tuned using k-fold cross validation with
three folds of the training data on only half of the tasks. We do
not tune hyperparameters on the full task set because tuning
hyperparameters with hold out data from all tasks may violate
the principal of continual learning that states each task in visited
only once [4]. The results reported outside of this section are
on the CIFAR-100 testing split (defined in the dataset).

D. Full Results

We provide additional detail to the results from the main text
by reporting (i) the original results with additional metrics and
standard deviations (Tables III,IV, and V) and (ii) Ω curves
for each experiment in Figures 2 and 3.



TABLE III: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs with standard
deviation. The results from these tables do not include a coreset (and use the same set of hyperparameters, as described in
SM-C)

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 5 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 15.6± 0.9 52.5± 2.5 −25.7± 26.2 43.8± 2.3
E2E 12.5± 0.9 46.1± 0.9 1.4± 0.6 42.5± 1.2
DR 16.0± 0.9 53.7± 0.7 0.3± 0.7 41.6± 1.5
GD 32.1± 0.2 69.9± 0.9 0.5± 0.8 5.0± 0.3
DM 44.8± 1.4 84.4± 3.0 2.5± 0.1 1.2± 0.1

(b) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 8.2± 0.1 34.7± 0.8 −32.2± 24.6 56.2± 2.0
E2E 7.5± 0.5 32.3± 0.6 −0.5± 0.4 56.0± 1.8
DR 8.3± 0.3 36.4± 0.2 −1.9± 0.3 57.4± 1.3
GD 21.4± 0.6 60.0± 1.9 −14.6± 0.1 18.4± 1.5
DM 37.5± 0.7 76.9± 2.5 −1.0± 1.0 6.5± 0.5

(c) RandomClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 4.3± 0.4 22.0± 0.8 −41.6± 13.8 69.4± 0.5
E2E 4.0± 0.3 21.1± 0.6 −4.1± 0.8 67.7± 1.4
DR 4.3± 0.4 22.4± 0.7 −7.1± 0.2 70.6± 1.2
GD 13.4± 1.9 42.7± 1.1 −29.2± 3.5 37.4± 0.8
DM 21.1± 1.0 60.8± 0.8 −8.8± 0.7 17.3± 1.7

(d) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 3.5± 0.1 18.5± 0.5 −33.5± 6.0 54.3± 0.8
E2E 3.2± 0.2 18.1± 0.6 −14.6± 3.5 53.0± 0.1
DR 3.7± 0.1 19.4± 0.6 −17.6± 1.3 56.6± 0.1
GD 10.5± 0.2 37.4± 1.8 −25.1± 0.1 29.1± 0.8
DM 20.8± 0.8 57.8± 1.4 −10.8± 0.8 14.8± 0.3



TABLE IV: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs with standard
deviation. The results from these tables are with a 400 image coreset (and use the same set of hyperparameters, as described in
SM-C)

(a) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 19.5± 0.9 59.3± 1.7 −14.5± 0.2 23.1± 0.5
DR 20.1± 0.8 57.8± 1.5 −15.2± 0.4 31.9± 3.3
GD 21.4± 0.9 57.7± 1.8 −12.5± 0.4 8.0± 1.7
DM 24.4± 0.4 67.5± 1.3 −15.1± 1.3 21.9± 1.5

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 18.9± 1.2 59.4± 1.3 −16.6± 1.0 22.2± 0.3
DR 18.8± 1.0 62.8± 1.7 −17.6± 0.7 27.5± 0.3
GD 17.9± 0.8 50.2± 0.8 −10.6± 0.8 −2.1± 2.0
DM 19.7± 0.8 63.3± 2.1 −18.2± 0.7 24.9± 0.6

(c) ParentClass Tasks with NegativeSuperclass Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 19.9± 1.2 60.1± 0.5 −16.1± 1.0 22.5± 0.4
DR 20.1± 1.9 62.1± 1.8 −16.8± 0.2 28.7± 1.0
GD 18.1± 0.6 50.5± 0.7 −10.9± 1.2 −1.7± 1.6
DM 20.7± 1.5 64.8± 1.3 −17.4± 0.7 24.7± 1.3

(d) ParentClass Tasks with Random Unlabeled Data Distribution, 20 Tasks

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
Base 14.6± 1.4 53.4± 2.4 −14.7± 6.4 29.8± 0.6
E2E 19.8± 0.5 60.0± 1.5 −15.1± 0.3 23.7± 0.6
DR 19.9± 1.7 61.8± 1.2 −15.7± 0.6 29.9± 1.6
GD 21.3± 0.5 59.9± 0.5 −13.7± 0.2 8.3± 2.7
DM 22.4± 1.3 65.1± 1.8 −16.1± 0.3 23.3± 0.9

TABLE V: Full results (%) on Tiny-ImageNet with 20% Labeled Data for RandomClass Tasks with Uniform Unlabeled Data
Distribution (10 Tasks, no Coreset). Results are reported as an average of 3 runs with standard deviation. The results from this
table use the set of hyperparameters described in SM-C

Metric AN (↑) Ω (↑) BWT (↑) FGT (↓)
UB 40.7± 0.3 100.0± 0.0 3.8± 0.5 5.2± 0.5

Base 6.5± 0.6 35.1± 1.5 −10.4± 2.4 45.1± 2.9
E2E 5.8± 0.6 30.3± 1.9 0.9± 0.6 39.3± 3.1
DR 6.8± 0.4 35.3± 1.1 −1.7± 0.7 45.0± 2.7
GD 11.9± 1.3 50.6± 2.9 −17.4± 2.6 12.5± 1.3
DM 24.8± 0.7 74.7± 1.6 −5.9± 0.4 7.6± 0.1



Fig. 2: Ω curves showing task number t on the x-axis and Ω up to task t on the y-axis

(a) Ω curve for Table IIIa (b) Ω curve for Table IIIb

(c) Ω curve for Table IIIc (d) Ω curve for Table IIId

(e) Ω curve for Table IVa (f) Ω curve for Table IVb

(g) Ω curve for Table IVc (h) Ω curve for Table IVd



Fig. 3: Ω curve for Table V showing task number t on the
x-axis and Ω up to task t on the y-axis

E. Performance of OOD Detection

We show AUROC (a metric for OoD detection) over time
for DM in both RandomClass Tasks with Uniform Unlabeled
Data Distribution (Figure 4a) and ParentClass Tasks with
PositiveSuperclass Unlabeled Data Distribution (Figure 4b). A
high AUROC means the distributions of the ID data and OoD
data are separable. As we can see, AUROC is decreasing over
time. In the RandomClass scenario, this is a smooth decline
(as expected). In the ParentClass scenario, the decline is not
smooth, likely due to the correlations between tasks making
the task difficulty highly deviate between runs.

F. Super class and parent class associations for CIFAR-100

We visualize example streams for each task sequence in
(Figure 5). As a reminder, we use the following terminology
to describe the correlations of the tasks (i.e. labeled data):
RandomClass Tasks, where no correlations exist in task classes,
and ParentClass Tasks, where tasks are introduced by CIFAR-
100 parent classes (i.e. each task is to learn the five classes
of a single CIFAR-100 parent class). For the unlabeled data
distribution we have: Uniform Unlabeled, where all classes
are uniformly dsitributed in unlabeled data for all tasks,
PositiveSuperclass Unlabeled, where the unlabeled data of
each tasks consists of the parent classes in the same super-
class as the current task, NegativeSuperclass Unlabeled, where
the unlabeled data of each tasks consists of parent classes from
different super-class as the current task, and RandomUnlabeled,
where the unlabeled data of each task consists of 20 randomly
sampled classes (roughly equal to the average class size in
a super-class). We also show the relationship between super
classes and parent classes for CIFAR-100 (Figure 6) as defined
by [5].

G. Additional Studies

We found that confidence calibration in GD [2] had mixed
effects in our experiments. We ablate this contribution for
RandomClass Tasks with Uniform Unlabeled Data Distribution
(Table VIa), ParentClass Tasks with PositiveSuperclass Unla-
beled Data Distribution (Table VIb), and ParentClass Tasks
with Random Unlabeled Data Distribution (Table VIc). We
contribute this finding to the assumption made in GD that the
unlabeled data does not contain data from the current task

Fig. 4: AUROC over time for DM showing task number t on
the x-axis and AUROC on the y-axis

(a) RandomClass Tasks with Uniform Unlabeled
Data Distribution

(b) ParentClass Tasks with PositiveSuperclass
Unlabeled Data Distribution

(which is heavily violated in some of our experiments). Even
though removing this mechanism can boost GD performance
for some of the experiments (Tables VIa and VIb) and makes
it worse for others (Table VIc), it is still significantly below
our method (DM) in each case.

H. Additional Background and Related Work

Continual Learning Approaches: Approaches to mitigate
catastrophic forgetting in continual learning can be broadly
organized into three types: rehearsal, architectural, and regular-
ization [6]. Rehearsal methods include storage to "replay" data
or experiences from previous tasks to mitigate catastrophic
forgetting [1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Rather than storing raw data, some methods train a generative
model [18, 19, 20] or replay compressed data representations in
a late layer [21]. Architectural approaches typically avoid over-
writing the current model by expanding the model parameters
to make room for knowledge related to novel tasks [22, 23, 24,
25, 26]. Finally, regularization approaches focus on penalizing
changes to parameters important to past tasks. Approaches
include regularization penalties [27, 28, 29, 30, 31], meta
learning [32], model compression [33, 34, 35], or knowledge
distillation [2, 36, 37, 38].

Semi-Supervised Learning: Semi-supervised learning lever-
ages plentiful available unlabeled data to boost model perfor-



Fig. 5: Example streams for each task sequence



Fig. 6: Super-parent class relationships for CIFAR-100

TABLE VI: Results (%) for GD Confidence Calibration Ablation on CIFAR-100 with 20% Labeled Data. Results are reported
as an average of 3 runs with mean and standard deviation.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Confidence
Calibration AN Ω BWT FGT

21.4± 0.6 60.0± 1.9 −14.6± 0.1 18.4± 1.5
23.7± 1.2 67.0± 3.1 −5.5± 1.8 20.3± 2.0

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence
Calibration AN Ω BWT FGT

17.9± 0.8 50.2± 0.8 −10.6± 0.8 −2.1± 2.0
19.5± 0.4 54.4± 3.8 −12.6± 1.0 7.2± 3.5

(c) ParentClass Tasks with Random Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence
Calibration AN Ω BWT FGT

21.3± 0.5 59.9± 0.5 −13.7± 0.2 8.3± 2.7
18.1± 0.9 54.1± 0.7 −12.0± 1.2 20.3± 2.8

mance when given a (typically small) amount of labeled data.
Semi-supervised learning is popular because labeling large
datasets is an expensive process. A simple yet popular technique
is to provide pseudo-labels [39] for confident unlabeled data
based on the current model’s predictions and to treat this pair
(the unlabeled data and pseudo-label) as if it were a labeled
data pair. Many following methods build on this idea of using
predictions on the unlabeled data to boost performance. For
example, mean teachers [40] involve averaging model weights
for a temporal ensembling approach which encourages consis-
tent label predictions over time. Virtual Adversarial Training
(VAT) smooths the decision boundary around each unlabeled
data point to be robust against adversarial perturbations. More
recent methods include MixMatch [41], which involves using
low-entropy labels and strong data augmentations for a Mix-Up
loss, and FixMatch [42], which enforces consistent labeling
between weakly and strongly augmented versions of unlabeled
data. Other approaches for leveraging unlabeled data is to use
it for an auxiliary loss such as generative loss [43, 44] or
self-supervised learning [45]. The reader is referred to [46] for

a recent survey of popular techniques and evaluations.
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